Похоже, как минимум за 117-м элементом классический вариант периодического закона ломается сильно, а местами сбоит уже и раньше. Это Эйнштейн Менделееву подгадил
Остров стабильности, все дела.
Но как-то за свойствами ядра упускают свойства атомов, а они у "большеномерных" становятся где-то даже удивительнее свойств самого ядра. Хотя к сожалению, свойства
атома пока известны сугубо теоретически.
Элемент № 118, оганессон, назван в честь Юрия Цолаковича Оганесяна, второго человека после Глена Сиборга, именем которого еще при его жизни назвали химический элемент. Суффикс «он» в названии оганессона объясняется его положением в Периодической системе — формально его можно считать самым тяжелым инертным газом. Именно формально: получено достаточно данных в пользу того, что характер заполнения электронной оболочки сверхтяжелых элементов совершенно не таков, как у легких.
// www.hij.ru
Суффикс «он» в названии оганессона объясняется его положением в Периодической системе — формально его можно считать самым тяжелым инертным газом. Именно формально: получено достаточно данных в пользу того, что характер заполнения электронной оболочки сверхтяжелых элементов совершенно не таков, как у легких. Дело в том, что из-за большого заряда тяжелых атомных ядер электроны в сверхтяжелых элементах разгоняются до такой скорости, при которой пренебрегать теорией относительности уже нельзя. Конечно же время жизни оганессона слишком мало, и определить экспериментально, будет ли элемент № 118 проявлять свойства инертного газа, невозможно. Тем не менее исследователи из Новой Зеландии и США провели квантово-химические расчеты, результаты которых позволяют считать оганессон уникальным атомом.
Любой школьник (иногда и школьный учитель химии) скажет, что оганессон обладает электронной оболочкой инертного газа, а значит, строение его внешнего слоя можно записать как 7s27p6. Тем не менее, химики-теоретики Петер Швердтфегер , Пол Жерабек (Университет Мэсси, Новая Зеландия), Бастиан Шутрумпф и Витольд Назаревич (Университет Мичигана) предсказывают, что распределение электронов, вращающихся вокруг столь большого ядра, в большей степени теряет свою оболочечную структуру, размываясь в «электронный газ».
Некоторые искусственные радиоактивные трансфермиевые элементы химики получили в количествах, достаточных для химических экспериментов. Элементы разделили с помощью хроматографии и определили валентные состояния для отдельно взятых атомов. Например, оказалось, что свойства резерфордия и дубния (элементы № 104 и № 105) отличаются от тех, которые можно было бы спрогнозировать по их положению в Периодической системе, а вот для элемента № 106 (сиборгия) никаких отклонений от предсказаний, сделанных с помощью Периодического закона, не было («Journal of Nuclear and Radiochemical Sciences», 2002, 3, 113—120; doi: 10.14494/jnrs2000.3.113). Отклонения вызваны изменением энергий электронов, развивающих околосветовые скорости под воздействием ядра со значительным положительным зарядом, говоря проще — релятивистских эффектов.
Исследователи отмечают, что для оганессона проявление релятивистских эффектов очень существенно — они обусловливают так называемое спин-орбитальное сочетание, то есть взаимосвязь спинового состояния электрона и характеристик его перемещения по орбиталям. При значительном спин-орбитальном сочетании заселенность электронов по уровням со строго определенными энергетическими характеристиками размывается, и электроны, находящиеся около ядра, распределяются практически равномерно, образуя облако электронного газа, или Ферми-газа.
Эффект размывания электронных оболочек постепенно увеличивается вместе с ростом заряда ядра. Согласно расчетам, оганессон существенно отличается от инертных газов, расположенных в той же группе Периодической системы. Состояние электронов в его атоме должно быть очень близким к предельной их делокализации — Ферми-газу. В таком «размазанном» состоянии электроны легко поляризуются, а значит, атомы оганессона будут связываться друг с другом прочными вандерваальсовыми взаимодействиями, и, наиболее вероятно, при комнатной температуре это будет не газ, а твердое вещество. Кроме того, коль скоро внешняя оболочка оганессона — не устойчивый октет, элемент № 118 будет гораздо реакционноспособнее по сравнению с его соседями — инертными газами.
Первые 117 элементов таблицы Менделеева были нормальными. И вот появился 118-й. Оганесон (Og), в девичестве унуноктий, в 2016 году получил имя в честь Юрия Оганесяна, научного руководителя Лаборато…
// batrachospermum.ru
Распределение плотности электронов в трех благородных элементах без учета релятивистских эффектов (вверху) и с учетом оных (внизу). Согласно расчетам, в оганесоне электроны не ограничивают себя орбиталями, а формируют равномерное облако Ферми-газа.
Если руководствоваться вычислениями, основанными на классической (=нерелятивиской, хоть и квантовой) физике, то электроны оганесона должны располагаться в окружающих атомное ядро оболочках, как у почти всех нормальных элементов. Однако оганесон – элемент сверхтяжелый, а значит, из-за большого заряда ядра его электроны разгоняются до таких значительных скоростей, что возникает необходимость учитывать теорию относительности Эйнштейна, и если включить ее в расчеты, то получается странная штука: вместо дискретных электронных оболочек электроны витают в более-менее равномерно размытом облаке электронного газа!
Благородные газы еще называют инертными, потому что они химически неактивны и участвуют в реакциях лишь в экстремальных условиях, как при апокалипсисе. Оганесон – исключение. Из-за необычного распределения электронов он легко отдает и принимает электроны, а значит, может быть химически реактивным. Получается, что оганесон – парадоксально неинертный благородный газ.
К тому же он вовсе и не газ в привычном понимании этого слова. В «размазанном» состоянии облака электроны оганесона легко поляризуются, а значит, атомы элемента будут связываться друг с другом прочными вандерваальсовыми взаимодействиями. Вместо того чтобы отскакивать друг от друга, словно футбольные мячики, как в типичных газах, атомы оганесона при комнатной температуре, вероятно, будут стремиться слипнуться в твердое вещество! Это уже не благородный газ, а благородная твердь какая-то.
Протоны ядра оганесона тоже могут вести себя нестандартно. Обычно протоны отталкиваются друг от друга в силу положительного заряда, но не разлетаются благодаря так называемым ядерным силам, в основе которых лежит сильное взаимодействие – намного более сильное, чем кулоновские взаимодействия между зарядами. Однако у оганесона протонов аж 118 штук, поэтому их объединенные кулоновские усилия могут частично преодолеть ядерную силушку, в результате чего в ядре сформируется пузырь! В центре ядра протонов окажется меньше, чем на периферии.
А вот нейтроны ядра, как и электроны вокруг ядра, смешаются в Ферми-газ, предсказывают ученые.
В общем, хоть и любопытно, но непотребство, конечно - посему виновник торжества смотрит на это несколько осуждающе. "И вы это всё устроили в атоме моего имени?" Не благородный газ, а чорт знает что? Нет ли здесь личного выпада?